Struct deltatable::table_function::RUNTIME
source · struct RUNTIME {
__private_field: (),
}
Fields§
§__private_field: ()
Methods from Deref<Target = Runtime>§
sourcepub fn handle(&self) -> &Handle
pub fn handle(&self) -> &Handle
Returns a handle to the runtime’s spawner.
The returned handle can be used to spawn tasks that run on this runtime, and can
be cloned to allow moving the Handle
to other threads.
Calling Handle::block_on
on a handle to a current_thread
runtime is error-prone.
Refer to the documentation of Handle::block_on
for more.
Examples
use tokio::runtime::Runtime;
let rt = Runtime::new()
.unwrap();
let handle = rt.handle();
// Use the handle...
sourcepub fn spawn<F>(&self, future: F) -> JoinHandle<<F as Future>::Output>
pub fn spawn<F>(&self, future: F) -> JoinHandle<<F as Future>::Output>
Spawns a future onto the Tokio runtime.
This spawns the given future onto the runtime’s executor, usually a thread pool. The thread pool is then responsible for polling the future until it completes.
The provided future will start running in the background immediately
when spawn
is called, even if you don’t await the returned
JoinHandle
.
See module level documentation for more details.
Examples
use tokio::runtime::Runtime;
// Create the runtime
let rt = Runtime::new().unwrap();
// Spawn a future onto the runtime
rt.spawn(async {
println!("now running on a worker thread");
});
sourcepub fn spawn_blocking<F, R>(&self, func: F) -> JoinHandle<R>
pub fn spawn_blocking<F, R>(&self, func: F) -> JoinHandle<R>
Runs the provided function on an executor dedicated to blocking operations.
Examples
use tokio::runtime::Runtime;
// Create the runtime
let rt = Runtime::new().unwrap();
// Spawn a blocking function onto the runtime
rt.spawn_blocking(|| {
println!("now running on a worker thread");
});
sourcepub fn block_on<F>(&self, future: F) -> <F as Future>::Outputwhere
F: Future,
pub fn block_on<F>(&self, future: F) -> <F as Future>::Outputwhere
F: Future,
Runs a future to completion on the Tokio runtime. This is the runtime’s entry point.
This runs the given future on the current thread, blocking until it is complete, and yielding its resolved result. Any tasks or timers which the future spawns internally will be executed on the runtime.
Non-worker future
Note that the future required by this function does not run as a worker. The expectation is that other tasks are spawned by the future here. Awaiting on other futures from the future provided here will not perform as fast as those spawned as workers.
Multi thread scheduler
When the multi thread scheduler is used this will allow futures to run within the io driver and timer context of the overall runtime.
Any spawned tasks will continue running after block_on
returns.
Current thread scheduler
When the current thread scheduler is enabled block_on
can be called concurrently from multiple threads. The first call
will take ownership of the io and timer drivers. This means
other threads which do not own the drivers will hook into that one.
When the first block_on
completes, other threads will be able to
“steal” the driver to allow continued execution of their futures.
Any spawned tasks will be suspended after block_on
returns. Calling
block_on
again will resume previously spawned tasks.
Panics
This function panics if the provided future panics, or if called within an asynchronous execution context.
Examples
use tokio::runtime::Runtime;
// Create the runtime
let rt = Runtime::new().unwrap();
// Execute the future, blocking the current thread until completion
rt.block_on(async {
println!("hello");
});
sourcepub fn enter(&self) -> EnterGuard<'_>
pub fn enter(&self) -> EnterGuard<'_>
Enters the runtime context.
This allows you to construct types that must have an executor
available on creation such as Sleep
or TcpStream
. It will
also allow you to call methods such as tokio::spawn
.
Example
use tokio::runtime::Runtime;
fn function_that_spawns(msg: String) {
// Had we not used `rt.enter` below, this would panic.
tokio::spawn(async move {
println!("{}", msg);
});
}
fn main() {
let rt = Runtime::new().unwrap();
let s = "Hello World!".to_string();
// By entering the context, we tie `tokio::spawn` to this executor.
let _guard = rt.enter();
function_that_spawns(s);
}